
NASA/CR-2001-210873

ICASE Report No. 2001-15

A Component-based Programming Model for

Composite, Distributed Applications

Thomas M. Eidson

ICASE, Hampton, Virginia

May 2001

The NASA STI Program Office... in Profile

Since its founding, NASA has been dedicated

to the advancement of aeronautics and space
science. The NASA Scientific and Technical

Information (STI) Program Office plays a key

part in helping NASA maintain this

important role.

The NASA STI Program Office is operated by

Langley Research Center, the lead center for
NASA's scientific and technical information.

The NASA STI Program Office provides

access to the NASA STI Database, the

largest collection of aeronautical and space

science STI in the world. The Program Office
is also NASA's institutional mechanism for

disseminating the results of its research and

development activities. These results are

published by NASA in the NASA STI Report

Series, which includes the following report

types:

TECHNICAL PUBLICATION. Reports of

completed research or a major significant

phase of research that present the results

of NASA programs and include extensive

data or theoretical analysis. Includes

compilations of significant scientific and
technical data and information deemed

to be of continuing reference value. NASA's

counterpart of peer-reviewed formal

professional papers, but having less

stringent limitations on manuscript

length and extent of graphic

presentations.

TECHNICAL MEMORANDUM.

Scientific and technical findings that are

preliminary or of specialized interest,

e.g., quick release reports, working

papers, and bibliographies that contain
minimal annotation. Does not contain

extensive analysis.

CONTRACTOR REPORT. Scientific and

technical findings by NASA-sponsored

contractors and grantees.

CONFERENCE PUBLICATIONS.

Collected papers from scientific and

technical conferences, symposia,

seminars, or other meetings sponsored or

cosponsored by NASA.

SPECIAL PUBLICATION. Scientific,

technical, or historical information from

NASA programs, projects, and missions,

often concerned with subjects having

substantial public interest.

TECHNICAL TRANSLATION. English-

language translations of foreign scientific

and technical material pertinent to
NASA's mission.

Specialized services that complement the

STI Program Office's diverse offerings include

creating custom thesauri, building customized

data bases, organizing and publishing

research results.., even providing videos.

For more information about the NASA STI

Program Office, see the following:

• Access the NASA STI Program Home

Page at http://www.sti.nasa.gov

• Email your question via the Internet to

help@ sti.nasa.gov

• Fax your question to the NASA STI

Help Desk at (301) 621-0134

• Telephone the NASA STI Help Desk at

(301) 621-0390

Write to:

NASA STI Help Desk

NASA Center for AeroSpace Information
7121 Standard Drive

Hanover, MD 21076-1320

NASA/CR-2001-210873

ICASE Report No. 2001-15

-- :-%i

_i__ _ ._i_i!i....... _; _

A Component-based Programming Model for

Composite, Distributed Applications

Thomas M. Eidson

ICASE, Hampton, Virginia

ICASE

NASA Langley Research Center

Hampton, Virginia

Operated by Universities Space Research Association

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23681-2199

Prepared for Langley Research Center
under Contract NAS 1-97046

May 2001

Available fi'om tile following:

NASA Center for AeroSpace hffomlation (CASI)

7121 Standard Drive

Hanover, MD 21076 1320

(301) 621 0390

National TectHficalhlfomlation Selwice(NTIS)

5285 Port Royal Road

Spfingfield, VA22161 2171

(703) 487 4650

A COMPONENT-BASED PROGRAMMING MODEL FOR COMPOSITE,

DISTRIBUTED APPLICATIONS

THOMAS M. EIDSON*

Abstract. The nature of scientific programming is evolving to larger, composite applications that

are composed of smaller element applications. These composite applications are more frequently being

targeted for distributed, heterogeneous networks of computers. They are most likely programmed by a

group of developers. Software component technology and computational frameworks are being proposed

and developed to meet the programming requirements of these new applications. Historically, programming

systems have had a hard time being accepted by the scientific programming community. In this paper, a

programming model is outlined that attempts to organize the software component concepts and fundamental

programming entities into programming abstractions that will be better understood by the application

developers. The programming model is designed to support computational frameworks that manage many

of the tedious programming details, but also that allow sufficient programmer control to design an accurate,

high-performance application.

Key words, software components, computational frameworks, scientific applications, computational

grids, distributed computing

Subject classification. Computer Science

1. Focus. Programming efficiency has been a problem in the scientific community for many years.

Attempting to extract good execution performance from state-of-the-art high-performance architectures can

be very time consuming. Distributed computing, especially on Grids [4], makes the situation worse as

heterogeneous computing environments at multiple sites necessitate that a large amount of detail must

be managed by the programmer. The situation is further complicated by the fact that larger, composite

applications are becoming more common [7] [9].

Programming systems are needed to assist with managing this detail. The programming models will

likely be based on higher-level abstractions than currently are common. In this note, a programming model

is motivated that focuses on developing composite applications targeted for Grid environments. This is

not an attempt to define a precise programming language as semantics are only defined to clarify the basic

abstractions. Emphasis is on pragmatics, the relationship of the proposed abstractions and their meaning

to the programmer [5].

The more relevant composite applications to the programming model discussed in this note are large,

scientific applications that often include high performance computations. These applications typically cou-

ple smaller element applications that focus on a narrow aspect of the larger problem. These composite

applications become challenging from the programming standpoint when the coupling of elements is tight

and a significant amount of data and event transfers are required. Such coupling can be associated with

both data-parallel and task-parallel application designs. The proposed model focuses on programming the

task-parallel aspects while still allowing data-parallel code to be included.

*ICASE, Mail Stop 132C, NASA Langley Research Center, Hampton, VA 23681-2199 (email: teidson@icase.edu). This

research was supported by the National Aeronautics and Space Administration under NASA Contract No. NAS1-97046 while

the author was in residence at ICASE.

These proposed ideas also reflect a change in the usage of scientific applications. Until the last few years,

most scientific applications were developed as a stand-alone package by an individual. Codes were shared

infrequently as results were usually passed via reports. But, scientific programming is maturing and the

free-lance programming styles are being replaced by best-practice styles. The resulting increased confidence

in codes written by others and the need to build composite applications has led to increased code sharing.

2. Definitions.

1. A programming model is a set of abstractions and a set of rules that specify the combination of those

abstractions in a form that can be translated to create execution instructions for an application.

2. A Problem-Solving Environment (PSE) is an integrated collection of software tools that facilitates

problem-solving in some domain. This includes defining, building, executing, and managing the

application. Additionally, this can include viewing and analyzing results related to the problem

being solved.

3. A computational framework is an integrated collection of software tools that facilitates the develop-

ment and execution of an application. A framework is the core feature of some PSEs.

4. An element application is a code in stand-alone executable or library form, that is focused on a

relatively narrow aspect of some physics, mathematics, graphics, or other science.

5. A task refers to a set of user code with one or more entry points (functions, subroutines, methods,

executables).

6. A context is defined as a collection of tasks and data packaged for execution and interaction with

other tasks. A Unix process is an example of a context.

7. A platform is one or more computers managed as a single entity that is connected via a network to

other platforms.

8. A composite application is a collection of tasks that would benefit from being distributed among

several contexts located on several platforms. The application typically includes a range of data and

event transfer operations between the various tasks and contexts that make-up the application. For

this discussion, a data-parallel code is considered as one task that runs in one distributed context on

one multi-node platform. A composite application is generally built by combining several element

applications together under the control of a work-flow description.

A composite application can be more than just a group of related element applications that share

files. The element applications can be loosely or tightly coupled via a variety of data and event trans-

fers. The nature of this coupling is a crude measure of the complexity of a composite application.

Physical problems with non-linear, stiff behaviors often result in computer algorithms with complex

communication patterns. The data and event transfers can also be viewed as programming enti-

ties that combine with the element applications to create a composite application. Non-traditional

programming features such as computer resources, file systems, network performance, usage permis-

sions, and user interfaces can also be viewed as programming entities.

9. Metadata is information about some programming entity that supports its use in some more com-

prehensive program (or meta-program) such as a composite application. Metadata includes interface

specifications that describe how to access the programming entity and behavioral specifications that

describe conceptual and practical details of correctly integrating the entity into the meta-program.

For example, the information expressed in a Fortran subroutine could define some numerical algo-

rithm. Interface metadata would describe the arguments needed to call that subroutine, typically in

some general language. Behavioral metadata might describe the parallelization strategy as it relates

to targetmachines[3].Behavioralmetadatacouldevenbeusedto describephysicalandnumerical
assumptionsembeddedin thenumericalalgorithm.

I0. A software component is a basic unit of software packaged for use in efficiently building some larger

composite application. The software package includes metadata that minimally defines any interfaces

to that software so that some computational framework can more easily provide the necessary

integration. Software component technology is intended

• to support software reuse and sharing,

• to simplify use of multiple languages,

• to support the efficient building of large applications, and

• to assist building distributed applications.

Eventually, this technology could enable plug-and-play environments for coupling reasonably com-

plex physics. However, this will require research in a number of disciplines, well beyond the scope

of this paper.

II. A computational Grid is a collection of heterogeneous computational hardware resources that are

distributed (often over a wide area) and the software to use those resources. An important feature

that converts a set of computers and software connected by an internet into a Grid is a set of sup-

port services (resource management, remote process management, communication libraries, security,

monitoring support, etc.) and an organizational structure that provides usage guidelines or rules.

3. Software Components. One solution to providing the flexibility and efficiency needed to develop

composite applications is software component technology. The basic technology has been demonstrated by

several commercial products [8]. These products are not particularly suited to the scientific programming

needs [1]. In general, the communication performance of these systems is poor to mediocre. They also do not

support all the data types, programming languages, and computer systems that are common in the scientific

community. Another problem is that they tend to include lots of baggage (e.g., business related services)

that is not particularly useful to scientific applications. Scientific requirements tend to evolve constantly

because of the importance of research and development. A solution that can grow on top of a light-weight

core technology is needed. New ideas need to be rapidly integrated without disrupting ongoing work. Finally,

the commercial model is based on application developers creating components and applications that can be

packaged for use by others. This scenario exists to a lesser degree in the scientific community as researchers

will need to constantly develop experimental components. A scientific computational environment will need

more emphasis on efficient component and composite application development.

The Common Component Architecture (CCA) Forum [2] is developing a scientific software component

specification along with several prototypes to test various approaches. This effort has made good progress

at developing a system that meets the above requirements. The CCA Forum has defined a lightweight

core design that is very promising. Each of the various prototypes experiment with implementations that

focus on different aspects of target scientific applications. One aspect that is not well-addressed is a general

programming model for composite applications. This paper attempts to define such a model.

The CCA specification is still evolving. The CCA focuses on defining three types of entities: Compo-

nents, Ports, and Frameworks. The CCA Component is a set of data and code that provides some related

functionality and that is chosen to provide a convenient programming granularity. A CCA Port is used

to define all interfaces between different CCA Components. A CCA Framework is a software system that

provides the functionality needed to couple CCA Components via CCA Ports to form a meta-program, all

based on the CCA specification. A CCA Service is a CCA Component that implements some common func-

tionalitythat is generallyassociatedwith a CCAFrameworkfor usebya user-createdCCAComponent.
CCAServicesincludecommunication,discovery,anderrorhandlingamongothers.TheCCAPortallowsa
CCAComponentto definethespecificationsofan interfaceinteractionwithoutnamingaspecificinstance
ofa CCAComponentto whichit will beconnected.Theconnectionisprogrammedseparately.

4. A ProgrammingModel.

4.1. Approach. Mostcomposite,distributedapplicationscanbeimplementedviaa setof software
componentsthatarecontrolledbyremoterequestsfromsomework-flowprogramorcomponentandbyusing
theservicesprovidedbysomeframework.Theroleof theframeworkis to managetheconnections,which
canbelocalandremote,betweenthevariouscomponentsandto providefunctionalitythat facilitatesthe
programmingandexecutionoftheapplication.A modelbasedonthissimpleviewprovidesallthefeatures
neededto buildmostapplicationsbut isnotparticularlysatisfactoryfroma programmer'sviewpoint.

Theprimaryproblemisthat theaboveapproachis toogeneral.A goodprogrammingmodelneedsto
balanceprogrammingflexibilitywithprogrammingeificiency[5]. Programmerslikefor theprogramming
abstractionsto suggestgoodprogrammingconstructionwhilealsoprovidingflexiblecontrolfora rangeof
options.Ideally,programmingabstractionsshouldmatchtheconceptsthat adeveloperhasusedto design
anapplication.Additionally,modernprogrammingmodelsneedto supportteamprogramming.Thismeans
thatprogrammingintentneedsto beexpressedclearlyandconcisely.

A typicalcompositeapplicationwill becomposedof tasks(functionsandmethods),sharedmemory
(internaltask,globalvariables),files(externalvariables),andevents(synchronizationof behavior),which
areorganizedintodifferentcontexts(processes)andexecutedondifferentplatforms(computers).Eachof
theseabstractionswill needto bereferencedin theusercodeaswellaswithinthescopeoftheframework
beingused.Asanapplicationwill containoneormoreuniquemembersofeachoftheseabstractiontypes
or families,it is clearthat eachfamilymemberneedsa uniqueidentityto createa preciseapplication.
Additionally,eachfamilymembermayhavemultipleinstancescreatedaspartoftheexecutingapplication
andeachinstanceneedsanidentity.

Figure4.1showsanexampleapplicationwith twotasks.TaskC runsin a "console"context(i.e.,a
processontheuser'sdesktop)andTaskRrunsona "remoteserver"context(i.e.,aprocessonsomeremote
computer).Pseudo-codefor TaskCthat definesthework-flowisshownin Figure4.2.In thisexample,Task
Ccreatestwocontexts,X andY, eachofwhichhavebeenconfiguredto includeaninstanceofR--R.1and
R.2. X andY maypossiblyexecuteon twodifferentremotecomputers.TaskC thendiscoversa handle
to eachinstanceof TaskR. A handleis just a referencingvariablethat theframeworklibraryfunctions
createanduseto insurethat thecorrectinstanceofa task(orothersimilarfamilymember)isused.Task
C thenrepeatedlyrequeststhat R.1andR.2beexecutedconcurrentlyinsidea loopuntil thework-flow
objectiveis satisfied.Taskprogrammingcanalsobemulti-layeredaseitherinstanceof TaskR canalso
makeframeworkrequests.Thisexamplealsoshowsa relativelysimplestrategyfor programmingmulti-
threadeddistributedapplications.Initiationof some"use"procedurefor oneormoreinstancesof different
ProgrammingComponentscanbestartedconcurrently.A "wait" procedurecanbecalledat somelater
appropriatepointbeforeaccessingtheresultsofthat "use".Each"use"canbemanagedbytheframework
viaaseparatethread.

In a distributedapplication,a servercontextis oftenusedto runoneor moretasks.A controlloop
(Figure4.1)in theservercontextexecutescontinuallyandwaitsonsignalsto starttheexecutionofthecode
encapsulatedbyatask.Thisisoftenmoreeificientthanstartingeachtaskin anewcontext.

Theabovetaskprogrammingconceptissimilarto thecomponentprogrammingconceptfoundin most

ConsoleContext

ServerContextX

server controller] ,,- s
|

Task R. 1

Server Context Y

J %

% server controller

C)

Task R.2

FIG. 4.1. Task Programming in a Framework

Arguments ri [2] , ro [2]

Handle HX, HY, HRI, HR2

HX = Create_context("X")

HY = Create_context("Y")

HRI = Discover_task("R",HX)

HR2 = Discover_task("R",HY)

// HX - a handle for Context X

// HY - a handle for Context Y

// HRI - a handle for Task R.l

// HR2 - a handle for Task R.2

while(1) {

Create_input(rl)

Execute_task(HRl,ri[l])

Execute_task(HR2,ri[2])

// Execute_task - "use" procedure

<other computations>

Wait on elements(HRl, HR2) // Wait on elements - "wait" procedure

ro[l] = Get_results(HRl)

ro[2] = Get_results(HR2)

if (Results_satisfactory(ro)) break

}

F_G. 4.2. Pseudo-code for Work-flow Program

software component systems, both commercial and prototype. One problem with many software component

systems is the tendency to hide any specifics about the context in which a specific software components exe-

cutes. For well-developed applications where the user is merging loosely coupled components, this approach

is satisfactory. But, science is about complex phenomena in which low-level constructs are tightly coupled

and high-fidelity applications are generally needed to best model complex phenomena. If high-fidelity ap-

plication development is to benefit from software component technology, programmers will need to have

somecontroloverthelocationoftasks.Historically,theorganizationof datalayoutandthecontrolofdata
transfershasalwaysbeenthefocusof performanceoptimizationfor scientificapplications.It isdimcult
to believethat heterogeneousnetworkswithwidelyvaryingperformancelevelsandcompositeapplications
createdfromasmorgasbordof codescanbesuccessfullyusedwithaprogrammingmodelwheredataflow
canbeignored.

4.2. Description of a ProgrammingComponent.Basedontheideasexpressedin theprevious
section,aprogrammingmodelisproposed.Themodelprimitives,referredto asProgrammingComponents,
will encapsulateuser-definedcode,data,andeventsalongwithdesiredprogrammingservices.A Program-
mingComponentwillconsistofanentity,bothphysicalandabstract,alongwithmetadatathatcandescribe
informationneededto locate,create,andexecuteanysoftwareandhardwarerelatedto theapplication.Pro-
grammingComponentsareselectedto bestmatchtheconceptstypicallyusedbyapplicationdevelopersto
expresstheir intentwhendesigninga composite,distributedapplication.ProgrammingComponentswill
generallymapto mostsoftwarecomponentdesigns.Herein,theCCAModelhasbeenspecificallytargeted.

ProgrammingComponentsenablethespecificationofall theentitiesofa component-basedapplication
in a compactandportableform. Traditionalapplicationsandtheentitiesfromwhichtheyarebuilt are
primarilydefinedbya setof codeandfilesalongwith documentationonhowto executetheir interfaces.
Whilethesedefinitionscancomein manyforms,theyall arereasonablycompactmainlybecausetheyare
programmedusinga singleprogramminglanguage.Compositeapplicationsaremorecomplexfor noother
reasonthantheyaretypicallycreatedfroma greaternumberof elementapplicationsthat areunfamiliar
to thedeveloper.Whenmultiplelanguages,heterogeneouscomputerarchitecturesandoperatingsystems,
anddistributedcomputingenvironmentsareinvolved,a largeamountof organizationaldetailneedsto be
includedin theapplicationdefinition.This informationis fundamentallydifferentfromthealgorithmic
detailsthat istheprimarycontentofusercode.TheproposedProgrammingComponentmodelis intended
to providea mechanismto express,separatelyviametadata,this organizationaldetailin amannerthat a
computationframeworkcanbestgluethedifferententitiesintoacompositeapplication.Themetadatawill
bereferredto asaSharedProgrammingDefinition(SPD)to emphasizeitsvaluein defininganapplication
outsidethescopeof aframework.

4.3. Extensionto otherEntities. InFigures4.3,4.4,and4.5,anexampleisshownwhereinformation
transferis doneseparatelyfromthe controlflow. Thecontrolflowwouldbesimilarto that shownin
Figure4.2.In thiscase,thesecondcomputationsinTaskShavesomedependencyonthefirstcomputations
inTaskR.Typicallyforperformancereasons,it issometimesdesiredtohavetheinformationflowbeseparate
fromthecontrolflow.In otherwords,it is fasterto letTaskRnotifyTaskSdirectly.Thisisoftentruefor
bothdatatransfersandeventsignals.

WhenthetwoTasks,RandS,arewritten,it is importantto useaprogrammingmodelandstylethat
supportsthedevelopmentof anaccurateandefficientapplication.Thereneedsto beassurancethat the
frameworkprovidingthecommunicationsknowsthatTaskSshouldbenotifiedwhenTaskR signalsEvent
E.A RegistryServicecanbeusedfor TaskR to publishtheexistenceof an instanceoftheeventandfor
TaskSto discoverit, butthisdoesnotresolvetheprogrammingdilemma.TheprogrammerofTaskSneeds
to knowtheidentityof EventE to programadiscoverrequest.Also,theuseof EventE in TaskSshould
bebasedonanunderstandingofthemeaningofEventE;i.e.,abehavioralspecificationoftheevent.While
theaboveinformationcouldbesharedbywordofmouth,a moreformalrepresentationwill beessentialif
associatedwiththedevelopmentofa largecompositeapplicationwheretensorhundredsofprogramming
entitiesareinvolved.Additionally,thisinformationor eventmetadataneedsto beassociatedwithTaskR.

ConsoeContextI
Server Context X

"-_- " ontrol Flow " -

Q'I
,,,,,

Task R

hfformation Flow

Server Context Y

Task S

F_G. 4.3. Information and Control Flows

Handle HY, HR, HS, HE

HY = Discover_context("Y")

HR = Discover_this_task()

HS = Discover_task("S",HY)

HE = Publish_Event ("E",HR)

<first computations>

Signal_event (HE, HS)

<second computations>

F_C. 4.4. Pseudo-code for Task R

Handle HX, HR, HE

HX = Discover_context("X")

HR = Discover_task("R",HX)

HE = Discover_Event("E",HR)

<first computations>

Wait on event(HE)

<second computations>

F_C. 4.5. Pseudo-code for Task S

If Task R is used in multiple applications, the Event E metadata needs to be available to the programming

team for each application.

But, an event is not owned by a piece of code. Several Tasks could generate an event with the same

meaning. From a code development prospective, the programming of an event is no different than the

programming of a call to execute a function or task. Both provide functionality (behavior) of a specific

program entity (with identity and state) that can be requested (via an interface) and that is outside the

scope of the current code. The coding of this request creates a dependence (relationship) between the

current code or component and some external code, event or other programming entity. More precisely, a

Programming Component is defined as an abstraction describing a well-defined programming entity that

possesses the following properties.

• behavior

• identity

• an interface

• state

• relationship

Behavior is the value provided by a Programming Component. A Programming Component cannot

be accurately used without a well-defined behavior. Particularly for scientific applications, behavior goes

well beyond an understanding of how to use an interface. A programming model that emphasizes interface

specifications trivializes the assumptions and concepts that were used to develop code being accessed via

the interface. The primary purpose of the interface is to allow precise control for the behavior of another

Programming Component to be accessed. State is important to allow for a wide range of functionality to

be provided by a minimum number of Programming Components. State can refer to configuration where

information in metadata can be altered to affect the behavior of an entity. State can also refer to internal

variables within the entity that affect behavior during execution. These are important since they are typically

controlled via an interface. However, state can also refer to the physical condition of some Programming

Components. A piece of code could be in source or object form. A computer could be on or off line. A file

could be in a readable form or encrypted. Additionally, Programming Components can have relationships.

A piece of code that reads a file has a programming relationship with that file. The programming of the

composite application is not complete until the correct instance of a conceptual file (or a procedure to

determine the correct instance at runtime) is identified. Additionally, programming is needed to assist the

framework in putting the correct instance in a location that is accessible by the code. Finally, the need for

identity is the primary guideline used to determine if an entity or functionality will be a useful Programming

Component.

Some software component systems tend to emphasize the independence of each component. Such a

characteristic provides a very flexible programming environment. For practical reasons, a programming

model should reflect the nature of its target applications. The physics' models simulated by scientific

applications include coupled constructs and as such the most natural and useful component granularity

will sometimes result in component dependencies.

4.4. Proposed Programming Components. Examples of several Programming Component families

are given below. The Shared Programming Definition for each Programming Component family includes a

unique identity along with configuration specifications. These specifications include interface, behavioral,

and reference details. Each Programming Component would be programmed by calling some framework

library in a manner suggested by the pseudo-code shown in the previous figures. The interface details would

describe how to program the variable portion of the framework library functions. A common example is

the argument list of a software component method execution. An Interface Definition Language (IDL)

is often used to specify the interface details [6] [8]. The SPD approach would extend the IDL approach

to allow the specification of key information relating to how a Programming Component accomplishes its

results. Such behavioral specifications may include computational details (a data-parallel code), numerical

details (the type of algorithm), or physical details (model equations include certain assumptions). Finally,

informationspecifyingrelatedProgrammingComponentsis neededto insurethat all familiesof acoupled
setof Componentsareincludedin anapplication.ThiscouldbeanotherTaskComponentthat computes
requiredinputswithsufficientaccuracyor that mustberunconcurrentlyto exchangeinformation.Other
referencesmayrestrictaTaskComponentto certainPlatformComponentsthat definesasetofacceptable
computercharacteristicsforthat Task.

Thecodeneededto executethefunctionalitydefinedfor eachProgrammingComponentwill generally
bepart of ServiceComponentssuppliedby theframework.TheSPDof eachProgrammingComponent
providesanyconfigurationdetailsforthe ServiceComponent.TheTaskComponentis anexceptionasit
alsoencapsulatesuser-writtencode.

• Task
A TaskProgrammingComponentmapsto thebasictaskorsoftwarecomponentconceptdescribed
above.It is theabstractionthat encapsulatesuser-writtencode.A generalmodelwouldallowthe
usercodeto bein source,object,orexecutableform.Theusercodecouldbesingle-threaded,multi-
threaded,ordata-parallel.TheComputationalFrameworkmayor maynothavecontroloverany
concurrentcode,dependingontheavailableframeworkservices.

• DataSet
Scientificapplicationsdealwithverylargedatasets.Oftenthereisnotsufficientmemoryto makea
copyofadataset.Scientificapplicationsalsowilluseseveralindependentlywrittencodestooperate
onsuchadataset.TheseindependentcodescouldbepackagedindifferentTaskComponents.If one
Taskownsthedataset,thenprogrammingflexibilitywillbeaproblem.A specialTaskComponent
couldbeusedto ownthisdataset.However,adetaileddescriptionofthedatasetwouldbeneeded
in theSPD.RatherthanoverloadtheTaskSPD,a separateDataSetProgrammingComponent,
that is focusedonthedatamanagementrole,is includedin themodel.Frameworkserviceswould
beavailablethat allowdatato becopiedandlinkedintoandoutof thescopeof TaskandData
SetComponentsthat arein thesamecontext.Serviceswouldalsoprovidedatatransfersbetween
differentcontexts.
Whenthedatasetsizesaresmallenoughto allowseveralDataSetComponentinstancesto existin
thesamecontext,otherprogrammingflexibilitybenefitsareavailable.OneDataSetinstancecan
belockedforusebyanexecutingTaskwhileanotherinstancecanbepartofadatatransfer.This
allowstheoverallcompositeapplicationto beprogrammedin a looselycoupledstyleasthecode
executionanddatatransfermaybetriggeredbywork-flowin differentlocations.

• Event
Aneventcanbeusedto relaybothcontrolanddatainformation.Theencapsulationof theevent
conceptasanEventProgrammingComponentisdoneto providealightweightprogrammingalter-
nativeto remoteexecutionsanddatatransfers.TheEventComponentbehavioris intendedto be
implementedusinganEventServiceComponent,whichsupportsdirectTask-to-Tasksignalsaswell
asamessageboardto supporteventbuffering.Broadcaststo groupsshouldalsobesupported.

• Context
Scientificcodesoftenrequireperformancesolutionsanddistributedapplicationswillgenerallyben-
efitfromoptimizedsolutions.OrganizingTaskandDataSetComponentsfor optimallocalityto
minimizedatatransfersmaychangein detailfor differentnetworkscenarios,but it will almostal-
waysbeimportant.A ContextProgrammingComponentcanbeusedto groupTaskandDataSet
Componentssothattheyexecutein thesamecontext.A ContextComponentcanbeusedsimilarto

anobjectin mostobject-orientedlanguages.It encapsulatesmethodsanddatatogetherto support
goodoverallprogramorganization,butit allowscodeswrittenindifferentlanguagesto beeificiently
coupledin thesamecontext.

• Platform
Onemoderndistributedcomputinggoalis to relievetheuserof theneedto beconcernedabout
thespecificcomputeronwhicha codeisrun. But, performanceconcernsnecessitateprogrammers
specifyingthelocalityof Tasks.SomelocalityconcernscanbesolvedbytheContextComponent.
However,thecostoftransferringdatabetweendifferentContextscanvarysignificantlyandaddi-
tionalcontrolis needed.SometimesdifferentTasksmayneedto bein separateContextsbut still
closetogether,wherecloseis definedbasedon networkperformance.Theymayneedto beon
thesamespecificcomputeror just ontwocomputersthat areclose.Otherpracticalconcernsalso
existsuchaslicenseissues,localityof file resources,architecture-specificcoding,andproprietary
restrictions.
A PlatformProgrammingComponentis usedto definea virtual computingresourceonwhicha
ContextComponentis to run. It canbedefinedbya specificIP addressor it canreferto a pool
ofcomputersthat isselectedat runtimebysomeframeworkoroperatingsystemsoftwarebasedon
requirementsspecifiedina SPD.A PlatformComponentwill tendto behard-wiredin theSPDof
theContextComponent.However,someapplicationswill needto mapa Contextto a Platformat
runtimebasedonparameters,suchasgridsize,that arepassedto therelatedContext,Tasks,and
DataSets.

• Site
Performanceandorganizationhavebeenarecurringthemeintheabovediscussions.Systemsoftware
canonlymakegooddecisionswhengivensumcientinformation.Communicationperformanceis
highlydependentonthetypeofnetworkoverwhichit travels.Ultimately,networkmetadatawillbe
neededforaframeworkto makeoptimalperformancechoicesfor anapplication.A roughestimate
ofnetworkperformancecanbemadebyassumingthatallcomputersonthesamelocalareanetwork
(LAN)are"closer"togetherthanthoseondifferentLANs.Additionally,informationrelatingto file
systemorganizationcanbeusefulto a framework.This includesdefiningfile serversandcross-
mountedfilesystems.
A SiteProgrammingComponentisusedto defineagroupof computers(orPlatformComponents)
locatedon thesameLAN.TheSiteSPDincludesinformationaboutfile systems,compilersand
schedulers.

• File
A FileProgrammingComponentisusefulfor manyofthereasonsthat a DataSetComponentis
needed.A FileComponentjustencapsulatesdatastoredoutsidethescopeofaContextComponent.
Thiscanincludethestandardfileconcept,butalsocanbeusedto defineinformationretrievedfrom
adatabaseor otherentity.Similarto a PlatformComponent,aFilecanrepresentconcreteentities
orit canrepresentvirtualinformationthatmustbechosenat runtime.LikeaDataSetComponent,
it isusefulto includespecificformatinformationin its SPD.ThiswillallowServiceComponentsto
provideFileto DataSettransfersviasimpleinterfaces.

• Application
AnApplicationProgrammingComponentisusefulto packagethecompletedefinitionof anappli-
cation.It wouldincludea list ofall necessaryuserProgrammingComponentsandanyframework

10

requirements.Work-flow,data-flow,andotherorganizationalinformationasmentionedaboveis
included.AlternativeComponents,usagesuggestions,anddocumentationcanalsobeincludedthat
willcreateacompletepacl_ge.

Theaboveitemsprovideareasonablycompletesetofprimitivesneededto fullydefinemanycomposite
applications.Otherprogrammingentitieswill alsobeusefulbutwerenotexplicitlydefinedin thispaper.
Theseincludeuserinformationto supportaccesspermissionneeds,separatelystarteduserinterfacesthat
needto join anapplication,check-pointingsupportto definesafestoppingpoints,andinteractivesupport
to aid in debugging,monitoring,andsteering.Thekeyfeaturethat determinesthe needfor a specific
ProgrammingComponentis identity.Specifically,a ProgrammingComponentwill needto bereferenced,
directlyor indirectly,in multipleplacesin a user'scodeforthepurposeofrequestingdesiredfunctionality
fromaframework.

A sideobjectiveofProgrammingComponentsandtheirSharedProgrammingDefinitionsis to support
portabilityfromoneframeworkto another.Ideally,onewouldliketo moveanapplicationbetweenframe-
workswithnoconfigurationrequired.An appropriatechoiceofProgrammingComponentsshouldat least
resultinaminimalconfigurationneededbya frameworkin additionto importingtheSPDinformation.

4.5. FrameworkServices.OneofthepositivefeaturesoftheCCAapproachis thattheframework
servicescanbebuilt asCCAComponents.Thisshouldallowa versatilesetof servicesto evolve.These
servicesarekeyto thesuccessofthecomponentapproach.Servicescanencapsulatecomputerandcomputa-
tionalsciencefunctionalitythatisneededbysophisticatedapplications,butwhichisviewedasburdensome
overheadbytheapplicationdeveloper.Applicationscientistsjust donothavethetimeto becomeskilledin
all aspectsofanapplication.A setof primaryservicesneedsto bedesignedthat providesimpleinterfaces
to a limited,but commonlyusedsetof functionality.Advancedservicescanthenbedevelopedto replace
theprimaryservicewhenspecializedfunctionalityisneeded.

Exampleofbaseframeworkservicesincludethefollowing.
• A registryserviceis neededto sharetheexistenceandlocationof ProgrammingComponentin-

stances.
• Managementservicesareneededto create,to destroy,andto otherwisemanageremoteprocesses

andthreads.
• Runtimeservicesareneededto bufferinformationsuchaslogs,queues,status,andavailability.
• Interactiveservicesareneededto providemonitoring,steering,anddebuggingfunctionality.
• Communicationservicesareneededto provideconfigurableconnectionswith appropriateperfor-

manceandfunctionality.
• Informationservicesareneededto storeSharedProgrammingDefinitionsfor convenientaccessby

atargetgroup.
Baseframeworkservicesareonlythestartingpoint. Individualprogrammingcommunitiescanbuild

servicesthat arespecificto somenumericaltechniqueor physics.Forexample,a disciplinedataservice
couldbecreatedthat definedseveralstandarddataformatsandtranslationservicesbetweenthoseformats.
TaskComponentscouldbecreatedto workwithsomeor all oftheformats.TwoTasksthat useddifferent
formatscouldbeintegratedusingatranslationservice.

4.6. IdeasRelating to Program Organization.Clearly,agoodprogrammingabstractionwill col-
lectlower-layerdetailin a modularformthat hasbeneficialorganizationaleffects.Generally,modelswith
minimalinteractionsbetweenabstractionsareeasierto understandandto learn.However,it is thoseinter-
actionsthattypicallyprovideuseful,sophisticatedfunctionality.Thechoiceofthecontentof acomponent

11

mustbecarefullychosento findanappropriatebalancebetweenclarity,performance,andprogramming
efficiency.

Mostcompositeapplicationswill havea mainprogramor scriptthat orchestratestheexecutionof the
entitiesrepresentedbythe variousProgrammingComponents.This is a primarypartof the application
work-flowthat definesall instructionsto theframework.Thework-flowisnotrestrictedto amainprogram
(saya ConsoleTaskComponent)as it canbedistributedthroughouttheuserTaskComponents.The
work-flowcanalsobedescribedviaapplicationmetadata.Forexample,theApplicationSPDcouldinclude
alist of ContextComponentsofa servertypethat shouldbestartedbytheframeworkbeforetheConsole
Componentisstarted.Theuseofdesiredframeworkservicescanbespecifiedin thework-flow.

Whiletheapplicationisbasicallydefinedbythework-flow,thecomplexnatureofscientificapplications
will sometimesresultin applicationdesignswith informationor dataflowsthat donot followthecontrol
flowimplementedbyaprimarywork-flowprogram.A featureof someSoftwareComponentsystemsis the
conceptofa port. EachTaskComponentdefinesoneor moreportsto representvirtualinteractionswith
externalentities.Forexample,afunctioncallwouldbemadebyreferencinga specificport that represents
aninterfaceof someProgrammingComponent,butnota particularinstance.A separatestepis neededto
tie this"usesport" to aninstanceof aProgrammingComponentthatimplementsandregistersa "provides
port" ofthesametypethat interfacesto thedesiredfunction.Theport conceptis not limitedto function
callsasit canbeusedto defineall externalinteractionssuchasdatatransfers,eventsignals,andinputand
outputwithafile. It isusefulto labelthe "functioncall"exampleasa work-flowportandthesecondgroup
asdata-flowports. This labelingexpressesa messageof intentbetweentheprogrammerandthesystem
developerto inferthat data-flowportsneedhigherperformance.Thecouplingof theportsprovidesthelast
pieceoftheapplicationdefinition.StaticconnectionscanbeprovidedaspartoftheApplicationSPD,but
aRegistryServiceComponentisusefulto providedynamicconnections.

Whilespecificdesignchoiceswill dependonthenatureandgoalsof eachapplication,mostcomposite
applicationswillbelargeandperformancewillbeimportant.Frequently,thecriticalrequirementinachieving
goodexecutionperformanceis thedataflow. Controlflowmodelswheredataor datavariablereferences
followtheexecutionpathfromfunctionto functionisonepopularapproach.However,a largeamountof
scientificcodesalsouseseparatedataflowpathsto transferaccessto databetweenfunctionsthat arefar
apartin thecallingsequencespace.Forexample,commonblocksin Fortranandglobalscopein C have
providedthisfunctionality.Thelabelingof portsasmentionedin thepreviousparagraphwillsupportthis
mixedcontrol/dataflowstyle.

4.7. Compiler Issues.To accessthebehaviorof a ProgrammingComponent,theprogrammerwill
needto includea callto somefunctionor method.Oneapproachis to providea librarythat canbe
programmedbypassingtheidentityof a ProgrammingComponentinstancealongwith someparameters
to requesta specificdesiredbehavior.Thisapproachcanbeaugmentedwithconfigurationdetailslocated
in themetadataassociatedwith therelatedProgrammingComponentfamily.Thisdynamicstyleprovides
a greatdealof flexibility.However,a numberof SoftwareComponentsystemsusean InterfaceDefinition
Language(IDL) to storethemetadata.An IDLcompilercanthenbeusedto generatea stubfunctionthat
is loadedwiththecallingcode.Theuser'scodemustalsobemodifiedto callthisstubfunction.Thestub
functionapproachprovidesacustominterfaceto theProgrammingComponentandit allowsforpotentially
betterperformanceastheoverheadof usingcomponentmethodologycanbereducedto oneextrafunction
call if thecallingandthe requestedcodearein thesamecontext.Becauseof thetendencyof composite
applicationsto bedistributedandthedesireforexecutionflexibility,it issuggestedthat adynamic,library

12

style should be the target model. Where performance is critical, the stub function approach can be provided

as an optimization.

The programming flexibility suggested in the previous paragraph leads to another suggestion. Current

Software Component systems tend to treat traditional compilation as distinct operation in the building of a

component or composite application. Clearly, there is much to be gained from compilers that are built around

component concepts. At a minimum the need for a separate IDL compiler would disappear. All Programming

Component behavior requests could be programmed via framework library calls, but using syntax recognized

by the compiler. The compiler could then use the metadata associated with the Programming Component

and any other Components with a relationship to generate the best code. Additionally, the metadata

could contain compilation suggestions and execution history that could benefit the compilations of a Task

Component, both directly and indirectly.

5. Summary. The general scientific programming community will require efficient software systems

to successfully develop composite applications in Grid environments. The proposed ideas on programming

models are intended to help bridge the gap between the software component ideas being developed and the

practical nature of the computational scientist. The exact nature of the programming model and languages

that need to be created will probably be the result of feedback between the system software developers and

the computational scientist. However, prototypes with good programming models need to be made available

to seed this feedback.

Acknowledgments. The author would like to thank the many scientific programmers and computer

scientists who have discussed programming with him over the years. Also, the many contributions to the CCA

Forum are appreciated as the CCA provided a foundation on which the author's ideas could be expressed.

REFERENCES

[I] R. ARMSTRONG, D. GANNON, A. GEIST, K. KEAHEY, S. KOHN, L. MCINNES, S. PARKER, AND

B. SMOLENSKI, Towards a common component architecture for high-performance scientific computing,

in Eighth IEEE International Symposium on High Performance Distributed Computing, August 1999.

[2] CCA, Common Component Architecture Forum webpage, in http://www.cca-forum.org, 2001.

[3] C. CICALESE AND S. ROTENSTREICH, Behavioral specification of distributed software, Computer, (1999),

p. 46.

[4] I. FOSTER AND C. KESSELMAN, The Grid: Blueprint for a New Computing Infrastructure, Morgan

Kaufmann Publishers, 1995.

[5] J. SAMMET, Programming Languages: History and Fundamentals, Prentice-Hall, 1969.

[6] J. SIEGEL, CORBA: Fundamentals and Programming, John Wiley and Sons, 1996.

[7] J. STEWART AND H. EDWARDS, The SIERRA framework for developing advanced parallel mechanics

applications, in Proceedings of First Sandia Workshop on Large-Scale PDE-Constrained Optimization,

Springer Lecture Notes in Computational Science and Engineering, 2001.

[8] C. SZYPERSKI, Component Software: Beyond Object-Oriented Programming, Addison-Wesley, 1998.

[9] R. WESTON, J. TOWNSEND, T. EIDSON, AND R. GATES, A distributed computing environment for

multidisciplinary design, in 5th AIAA/NASA/USAF/ISSMO Symposium on Multiple Disciplinary

Analysis and Optimization, September 1994.

13

Form Approved

REPORT DOCUMENTATION PAGE OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY(Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

May 2001 Contractor Report

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

A component-based programming model for composite, distributed

applications

6. AUTHOR(S)
Thomas M. Eidson

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
ICASE

Mail Stop 132C

NASA Langley Research Center

Hampton, VA 23681-2199

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Langley Research Center

Hampton, VA 23681-2199

C NAS1-97046

WU 505-90-52-01

8. PERFORMING ORGANIZATION

REPORT NUMBER

ICASE Report No. 2001-15

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

NASA/CR-2001-210873
ICASE Report No. 2001-15

11. SUPPLEMENTARY NOTES

Langley Technical Monitor: Dennis M. Bushnell
Final Report

Submitted to the Second International Workshop on Grid Computing.

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified-Unlimited

Subject Category 60, 61
Distribution: Nonstandard

Availability: NASA-CASI (301) 621-0390

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

The nature of scientific programming is evolving to larger, composite applications that are composed of smaller

element applications. These composite applications are more frequently being targeted for distributed, heterogeneous

networks of computers. They are most likely programmed by a group of developers. Software component technology

and computational frameworks are being proposed and developed to meet the programming requirements of these new
applications. Historically, programming systems have had a hard time being accepted by the scientific programming

community. In this paper, a programming model is outlined that attempts to organize the software component

concepts and fundamental programming entities into programming abstractions that will be better understood by

the application developers. The programming model is designed to support computational frameworks that manage

many of the tedious programming details, but also that allow sufficient programmer control to design an accurate,

high-performance application.

14. SUBJECT TERMS

software components, computational frameworks, scientific applications,

computational grids, distributed computing

17. SECURITY CLASSIFICATION

OF REPORT

Unclassified

NSN 7540-01-280-5500

18. SECURITY CLASSIFICATIOI_

OF THIS PAGE

Unclassified

15. NUMBER OF PAGES

18

16. PRICE CODE

A03
19. SECURITY CLASSIFICATION 20. LIMITATION

OF ABSTRACT OF ABSTRACT

Standard Form 298(Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

